Share this
Analyzer Sample System Design Basics for Selecting the Right Options
by Morgan Zealear on 3/2/21 8:45 AM
In the chemical, petroleum, energy, and semiconductor industries, fluid sampling and analysis require a wide range of sampling system designs. Accurate representative samples are essential in monitoring process conditions, product quality, and in maintaining environmental compliance. Whether you’re installing a grab sampling system for a new production process or upgrading an aging sampling system, proper design and option selection are critical to a consistent, reliable sampling process.
Accurate sampling begins with a clear understanding of the purpose of the analysis, the process fluid and conditions, and any limitations of infrastructure surrounding the sampling station. System design can range from the relatively simple to the very complex, including:
- Low-pressure, non-toxic liquid sampling by an operator who manually opens and closes a valve to dispense the liquid into a glass or polyethylene bottle
- High-pressure, high-temperature hydrocarbons that require cooling and filtering before filling a pressurized cylinder to transport a sample to the analyzer
Between those two ends of the sampling spectrum, there’s a near-infinite variety of design decisions and options to tailor a grab sampling system to the specific requirements of the sampling process. And when determining the best grab sampling system design it’s often to seek expert guidance.
To give you an appreciation for the options involved in designing an analyzer sample system, let’s review some of the critical decisions that you’ll make and how they impact system design.
Cylinder or Bottle? Depends on Process Fluid and Pressure
Sample container selection is based on process fluid and pressure. Glass or polyethylene jars are appropriate for low-pressure, non-toxic samples. An optional septum cap on the jar reduces the chances of leakage or off-gassing during sampling and transport to the analyzer.
Metal cylinders are the best option for toxic and/or high-pressure samples. They eliminate the risk of spillage or off-gassing during the sampling process and transport to the analyzer. You also have the option of including a rupture disk or relief valve to avoid accidents caused by overpressuring the vessel. This is for sample fluids subject to increased temperature during transportation to the analyzer.
Depending on the process fluid, you may also need to treat the surfaces of transport tubing and cylinder inside surfaces to reduce sample fluid absorption and adsorption into metallic surfaces and provide a more representative sample. Here, you have the option of electropolishing, and coatings such as SilcoNert®, Silcolloy®, and Dursan®.
Sample Station Location
In many retrofit implementations, the distance between the sample tap and the sampling station can be considerable, especially when the sampling station can’t be located close to the tap because of safety, ergonomic, or obstructing infrastructure considerations. When the sampling station is a significant distance from the sample tap consider options such as:
- installing a heat trace to keep fluids from cooling to the point where the flow is impeded;
- purging the transport line before and/or after taking the sample to remove stagnant fluid from the transport line; or
- using a continuous flow design to ensure fresh process fluid is readily available and sample time is minimized.
Safe and Efficient Sampling Processes
Any sampling process must be safe, efficient, and consistent. All design options should be made with these goals in mind. Let’s look at some of the key options to consider regarding analyzer sample system design.
Manual vs. Fixed-Volume
For toxic or high-pressure process fluids, you may want to opt for a fixed-volume sampling method. Rather than depending on the operator to manually control the level of sample fluid in the container, the fixed-volume option isolates the process pressure from the operator and limits the volume of dispensed fluid which helps prevent accidental overfilling. This is ideal for liquid or gas samples whose volume can be affected by increased temperature during transport.
Standard vs. Continuous Flow
A standard sampling configuration delivers process fluid to a container from the sample tap. Before taking the sample, the transport line retains stagnant fluid that could compromise sample quality. To prevent this, the transport line needs to be purged before taking the sample. The length of the transport line (tap to sampling station), volume, and flow rate determine how much time is required to purge the transport line. An accurate calculation of lag time to remove stagnant fluid is an essential aspect of sampling system design. So, the longer the line, the longer the amount of time required for the purge and the overall sampling process.
An alternative (and more efficient design) is a continuous flow configuration. It continuously circulates process fluid from a positive-pressure location through a sample cylinder and returns it to the process at a lower-pressure location while the operator takes a sample. There’s no waiting to purge the transport line or fill a container. When the sample cylinder is ready to be removed, a bypass valve redirects the flow away from the cylinder.
Continuous flow configuration circulates process fluid through the sample cylinder.
Although a continuous flow configuration is a more complex design, it can be a better option from the perspective of reduced sample time, particularly when a sample station is distant from the sample tap.
Analyzer Sample System Design Options? Work With Experts
You may have in-house expertise for designing and assembling grab sampling systems, but I’ve found that companies that work with experienced grab sampling vendors achieve better results regarding system design, implementation, and operations. The benefits include:
- designing systems to carefully accommodate existing infrastructure;
- recommending the highest quality components;
- simplifying the sampling process; and
- minimizing the time required to safely capture a representative sample.
For companies that don’t have in-house expertise, there’s all the more reason to seek the guidance of experts. Considering the time you might spend assessing the need, developing the design, and assembling a system, the entire process will be all the more efficient when you work with an expert. The overall result is an analyzer sample system designed to deliver long-term reliability, efficiency, and consistency.
Swagelok Field Engineers have been working with process and quality professionals in Northern California industries on analyzer sample system designs with options carefully tailored to the unique requirements of each sampling process. Our Field Engineers bring a wealth of experience to help customers assess design and performance, especially in high-risk process environments. We help identify improvement opportunities, whether via the latest component options or a new sample system design.
To find out more about how Swagelok Northern California can assist you with analyzer sample system design and selection of options that reliably deliver representatives samples, contact our team today by calling 510-933-6200.
Morgan Zealear | Product Engineer – Assembly Services
Morgan holds a B.S. in Mechanical Engineering from the University of California at Santa Barbara. He is certified in Section IX, Grab Sample Panel Configuration, and Mechanical Efficiency Program Specification (API 682). He is also well-versed in B31.3 Process Piping Code. Before joining Swagelok Northern California, he was a Manufacturing Engineer at Sierra Instruments, primarily focused on capillary thermal meters for the semiconductor industry (ASML).
Share this
- Archive (465)
- Assembly Services (207)
- About (100)
- Seal Support Systems (96)
- Best Practices (88)
- Training Services (74)
- Fittings (51)
- Semiconductor Applications (49)
- Hoses and Flexible Tubing (47)
- Regulators (44)
- Tubing (42)
- Grab Sampling Systems (32)
- Sampling Systems (32)
- Gas Systems (30)
- Services (30)
- Downloads (29)
- Valves (24)
- Application Support (18)
- Orbital Welding (17)
- Case Studies (13)
- Steam Systems (13)
- Frequently Asked Questions (12)
- Tools (12)
- Measurement Devices (7)
- Subsystems (6)
- Thermal Management (6)
- September 2023 (1)
- August 2023 (2)
- June 2023 (1)
- March 2023 (3)
- February 2023 (3)
- January 2023 (4)
- December 2022 (4)
- November 2022 (4)
- October 2022 (4)
- September 2022 (1)
- August 2022 (3)
- July 2022 (2)
- June 2022 (4)
- May 2022 (1)
- April 2022 (2)
- March 2022 (1)
- February 2022 (2)
- January 2022 (3)
- December 2021 (1)
- November 2021 (6)
- October 2021 (6)
- September 2021 (8)
- August 2021 (4)
- July 2021 (3)
- June 2021 (6)
- May 2021 (6)
- April 2021 (7)
- March 2021 (5)
- February 2021 (4)
- January 2021 (6)
- December 2020 (5)
- November 2020 (6)
- October 2020 (6)
- September 2020 (8)
- August 2020 (7)
- July 2020 (8)
- June 2020 (8)
- May 2020 (6)
- April 2020 (9)
- March 2020 (7)
- February 2020 (10)
- January 2020 (21)
- December 2019 (23)
- November 2019 (21)
- October 2019 (22)
- September 2019 (21)
- August 2019 (22)
- July 2019 (23)
- June 2019 (20)
- May 2019 (23)
- April 2019 (22)
- March 2019 (21)
- February 2019 (20)
- January 2019 (21)
- December 2018 (14)
- November 2018 (19)
- October 2018 (23)
- September 2018 (17)
- August 2018 (29)
- July 2018 (11)
- June 2018 (6)
- May 2018 (5)
- April 2018 (4)
- March 2018 (5)
- February 2018 (3)
- January 2018 (3)
- December 2017 (2)
- November 2017 (4)
- October 2017 (3)
- September 2017 (2)
- August 2017 (6)
- July 2017 (4)
- June 2017 (4)
- May 2017 (4)
- April 2017 (3)
- March 2017 (4)
- February 2017 (3)
- January 2017 (3)
- December 2016 (3)
- November 2016 (3)
- October 2016 (3)
- September 2016 (5)
- August 2016 (5)
- July 2016 (4)
- June 2016 (5)
- May 2016 (3)
- April 2016 (4)
- March 2016 (5)
- February 2016 (11)
- January 2016 (1)
- December 2015 (3)
- November 2015 (4)
- October 2015 (3)
- September 2015 (4)
- August 2015 (4)
- July 2015 (8)
- June 2015 (5)
- May 2015 (3)
- April 2015 (4)
- March 2015 (4)
- February 2015 (3)
- January 2015 (4)
- December 2014 (2)
- November 2014 (3)
- October 2014 (4)
- September 2014 (4)
- August 2014 (4)
- July 2014 (5)
- June 2014 (4)
- May 2014 (4)
- April 2014 (5)
- March 2014 (4)
- February 2014 (3)
- January 2014 (4)
- December 2013 (5)
- November 2013 (3)
- October 2013 (4)
- September 2013 (3)
- August 2013 (5)
- July 2013 (5)
- June 2013 (5)
- May 2013 (3)
- April 2013 (6)
- March 2013 (4)
- February 2013 (4)
- January 2013 (8)
- December 2012 (4)
- November 2012 (6)
- October 2012 (6)
- September 2012 (4)
- August 2012 (4)
- July 2012 (4)
- June 2012 (4)